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i “ INTRODUCTION
o
:‘§I IR
)
L
l‘) & /
Doty o)
e
ST 1. Scope of the thesis
NI
had — Careful experiments on boundary layer transition conducted in low tur-
_‘ 'q bulence wind tunnels have resolved three stages in the breakdown of lam-
"‘“H -
‘ inar flow into turbulence: in the first stage, two-dimensional oscillations,
R
' - commonly referred to as TS waves, appear and propagate in the direction of
I _
}' §; the flow; in the second stage there appears a rapid three-dimensional defor-
' v mation of the oscillatory flow; and in the brief third stage high frequency,
" ﬂ small scale, quasi-random fluctuations appear and quickly lead the flow into
%j-‘« o turbulence.
3
Al

2
>

The recent analysis of the second stage based on a secondary instability

y )
.
s
X,
)

mechanism arising from a parametric resonance induced by the TS wave has

i ";.'
LG -
:' ‘_C given results in quantitative agreement with experimental observations.
!
:";3 Using this approach, Herbert has studied the phenomenofn in plane channel
[aaal ’ , - } e g
P flow and in a Blasius boundary layer [1-5]. The preseat-work studies the
)

b effect of pressure gradients on the behavior of secondary instabilities. by
extending Herbert's analysis to the Falkner-Skan family of profiles, and

o develops a spatial formulation for disturbance growth to exactly match the

4‘ * . P . N

":,'&‘ N experimentally observed behavior. / gy L QT G L s
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2. Motivation

The study of secondary instabilities in the Falkner-Skan family of
profiles, and hence in flows with pressure gradients, is a necessary step
towards the analysis of transition on objects with a non-constant surface
pressure distribution, foremost among which are airfoils. In high-
Reynolds-number aerodynamics the effect of transition is mainly a quantita-
tive change in drag. At low Reynolds number, and in combination with a
separating boundary layer in strong adverse pressure gradients, the location
of transition and the structure of the transitional flow can affect the global
flow field about the airfoil. Indeed, with the presence of the second stage of
transition in a boundary layer undergoing separation, the three-dimensional

disturbances can activate strong vortex stretching in the subsequent free

-shear layer and cause breakdown into wall bound turbulence, forming a

separation bubble, while the absence of three dimensionality at separation
can allow periodical vortex pairing in the free shear layer and postpone tur-
bulence far enough downstream to cause the layer to permanently leave the
surface, creating a condition of stall over the airfoil. A visual representation
of this idea is given in figure 1. Hence in both high and low Reymolds
number external flows the presence and structure of transition is an impor-

tant phenomenon.

In the past eight decades, starting with the work of Orr and Sommer-
feld, extensive study has been done on the first stage (primary instabilities)
using the method of small oscillations. This approach yields correctly the

downstream location (critical Reynolds number) at which instability ini-

tiates, and describes accurately the oscillatory field at small amplitudes.




......

e & However, it cannot model the evolution of the three-dimensional stage, |
- h and, when used in conjunction with a e transition criterion, it gives transi-
. ‘ tional predictions erroneously independent of the upstream background dis-
5 : turbance amplitudes.

" The secondary instability model used in the present work overcomes
;‘,.‘ ! these shortcomings by incorporating the background disturbance amplitudes
: < as a parameter, and predicting in agreement with observation the form and
on o
S growth rate of secondary disturbances. We should mention, however, that
:f T this model is not complete in itself, for it does not include a criterion for
' determining the conditions at which the three-dimensional disturbances
“ . develop a ‘‘life of their own’’ by becoming independent from the parametric
~ .
\ -{ excitation of the TS wave as a source of growth. This step, along with the
\ . usage of actual airfoil boundary layer profiles in a downstream marching
. . transition prediction analysis, will be a future extension of the present work.
N

v o

N 3. Experimental view of boundary layer transition

'

. v In the study of boundary layer transition the majority of the experimen-
S "P tal results have been obtained by using the vibrating ribbon technique of
_/ . Schubauer & Skramstad (6], in which the transition over a body immersed
:j:: in a low turbulence stream is initiated, and hence, controlled by the regu-
{ f_ lated vibration of a tightly stretched ribbon. A more detailed account of
A wu

‘ N the following descriptions can be found in Klebanoff, Tidstrom, & Sargent
L 5 [7], Kachanov & Levchenko [8] , or in Saric et al. [9]. Let the streamwise,
; -jl; normal-to-plate, and spanwise directions compose an orthogonal system. In
@

a low noise environment a streakline observation in a boundary layer con-
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“&"1& = taining a forced oscillation, introduced by a vibrating ribbon, might proceed
e N o

’{:‘ as follows:

L" ‘ ‘

l"'

42 e At low oscillation amplitudes one observes traveling waves (TS waves)

invariant in the spanwise direction and propagating with the the flow.

- t - o
Sl
S

) Their amplitude harmlessly grows and decays in full accordance with
Ly
-j:}:_% linear stability theory. Turbulence is delayed to high Renoylds
ks -
el numbers.
s
;o N e When the amplitude of the TS wave is increased and a certain critical
;::.’” b combination of Reynolds number and amplitude is reached, the wave
EOA T
. A experiences a rapid spanwise periodic deformation. One can observe
'\\ :._
‘?-_:r_, b spanwise alternating peaks and valleys which indicate the presence of
‘-\: & enhanced and reduced wave amplitude. The peak-valley structure is
‘ staggered, repeating itself with twice the periodicity of the TS wave (see
L oY
'_ - Fig. 2a), and fixed hot wire measurements record subharmonic signals.
L2 v& The rapid growth of the three-dimensional structure leads to the forma-
\.:_::f tion of concentrated shear layers at the peak positions. The highly
%
.&1...- '.L. - . . . . 3 . L3 . ye
SO inflectional velocity distribution quickly breaks up into tertiary instabili-
Rt
[ ) ties.
X
el
b
VORI e At higher initial levels of the TS amplitude the above phenomenon is
LGS
G W . .
Py repeated, but with a different structure; the peaks and valleys are
T
,:-j:? 5 aligned, repeating themselves with the same frequency and periodicity
31‘4 as the TS wave. A system of streamwise vortices appears simultane-
Y
. ' ously with the aligned peaks and valleys (see Fig. 2b). Being first
‘e
Bt

v_': :;; observed in 1962 by Klebanoff et al. it is usual today to name this
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aligned peak-valley splitting as K-type breakdown. The disturbances

undergo pure spatial growth in all the above cases.

4. Review of past research

The three stages of boundary layer transition described have also been
observed in plane Poiseuille flow [10], in free shear layers [11], and in a
fluid with continuously stratified density (internal gravity wavesj [12]. In all
three flows, researchers have tried to model the second stage of transition
using two approaches: weakly nonlinear models, or parametric instability

models. The latter one has given the most general and accurate results.

Weakly nonlinear models appeared following the innovative work of
Landau. As discussed by Drazin and Reid [13], one can expand the velocity
field in weakly nonlinear analyéis as

V= § Ai(t)f;(x) + Complez Con. (1)

1 =1

where { f; } is a complete set of functions satisfying the boundary condi-
tions, and is usually taken to be the wave type modes of the linear problem

(Orr-Sommerfeld or Squire modes in boundary layers, Helmholtz modes in

\ t: free shear layers). When the series is inserted into the Navier-Stokes equa-
;;\\ jC: tion the nonlinear convective term (v-v)v creates resonant wave interac-
IR tions. The interaction is, by computational necessity, limited to a finite
< number of waves by truncating the series to a few terms, usually three.
- Different weakly nonlinear models stem from different selections of modes

in the truncated series. For compactness we introduce the wave vector

k = (a,3), where a is the streamwise wavenumber and J is the
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% \.EC ( perpendicular) spanwise wave number.
Z:*“Z ‘ The model of Benney and Lin [14], 1960, attempts to describe the
o Klebanoff type structure by considering the interaction between the TS
.t:i wave, k, = («,0), and two oblique modes of the Orr-Sommerfeld equation
;: L (OSE), k; = (a, +8) and ky = (@, -3), with 3 as a free parameter.
ks r Whether or not conditions for phase synchronization of the three modes
E:: ’:\. ' exist is still a subject of debate [15]. The model due to Craik [16] uses the
‘ - TS wave and two oblique modes of the OSE, k; = (a/2, +3*) and
;% 3 ko, = (a/2, - 3") to model the subharmonic structure. The value of 3* is
::5;1: 3.;_ chosen such that the modes k; and k, have the same phase speed as the TS
_.;‘ wave, thus allowing for efficient energy transfer among the three modes. In
A
'{ boundary layers, this model sometimes predicts correctly the value spanwise
[{T ﬁ undulation 3, but at other times, under similar experimental conditions, #*
:f ’ ] differs widely from the observed value. In plane Poiseuille low the model
z : is inoperative for reasons of symmetry {17]. Herbert and Morkovin [17] for-
‘ L_ warded a model composed of the TS wave and two longitudinal vortices of
-l'-' the OSE equation, k; = (0, +3) and k, = (0, - §), to model a spanwise
ié periodic longitudinal vortex structure.

)
t “" Other models have been developed, and the above list is by no means
\\ exhaustive. However, along with the weakly nonlinear model the author
;$ :_S should present a guarantee of ‘‘completeness’’ of the model, i.e. show that
.:_ ;ﬁ the modes considered are responsible for the observed phenomena. This
;g . task is difficult, it is rarely performed, and is the single greatest drawback of
L the method.
3 The secondary instability model based on parametric resonance is

o,

f*(.'.

ol
A SR
o p) TN N 0
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b 1
};:.3 { intuitively simple to understand using physical arguments. In the first stage
‘_. of transition the presence of the primary wave brings about a redistribution
‘ " ﬁ of vorticity in the flow. When moving with the velocity of the wave, an
- ": " observer sees a periodically spaced, coplanar arrangement of vortex tubes,
,__, N sometimes referred to as a ‘‘cat’s eyes’’ vorticity pattern. This arrangement
ill ~l: is highly unstable to small three-dimensional disturbances: a vortex tube
?\3 o slightly distorted along its length is alternatively placed into regions of faster
."' B and slower moving fluid and undergoes rapid stretching. Furthermore, if
-5.: 7 there is sufficient room, the arrangement is also unstable to small two-
: ﬁ dimensional disturbances which tend to amalgamate neighboring vortices
‘ ~ into a larger vortex (vortex pairing). The mathematical analysis, hence, can
E :;‘,. be divided into two parts; the conctruction of the the periodic flow arising
_;:? from the first stage of transition, and the analysis cf a superimposed three-
‘;“ B dimensional velocity perturbation of amplitude sufficiently small for lineari-
ih O

j’_:ls E zation. Due to the spatial periodicity of the basic dow, the instabilitv
%3 ’ mechanism is governed by a Floquet system.
20

{E: The first application of a Floquet system to boundary layer transition
:E ﬁz seems to have been done by Maseev [18], 1968. However, his work went
ﬁ unobserved, perhaps due to its short presentation and use of an unclear per-
" ¥ turbation method for solution. Prior to this work, Floquet theory had been
}-{3 1 used by Kelly {19], 1967, for the stability study of a inviscid free shear
.g layer. He found the vortex pairing mode to stem from principal parametric
NN

" = (subharmonic) resonance. Pierrehumbert & Widnall [20], 1979, repeated
: ~ the analysis using a more accurate periodic flow model composed of an array

-
X

of Stuart vortices.
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e
: :\ Observing that certain experimental setups for the study of Lamb-
\? . Taylor instabilities excited periodically the flow, Nayfeh [21], 1969, derived
;- i u a Mathieu type equation to explain the overstability behavior. In the mid
: t' ::;: and late seventies several researchers applied Floquet theory to model the
jf. ' ) evolution of three-dimensionality in internal gravity waves. McEwan &
'r' !: Robinson [12], 1975, studied parametric instability driven by time periodic
S coefficients. Mied [22], 1976, refined the analysis by changing to a frame
H : moving with the periodic wave and solved for temporally growing distur-
‘} "'J bances, and extended the analysis to Rossby waves [23]. In both studies he
-.:\; A shows that ‘‘the parametric instabilities reduce to the nonlinear resonant
: | = interaction in the limit of vanishing basic state amplitude’’. Drazin [24],
“;. J 1977, independently developed a Floquet formulation for this problem, and
2%

in his work he related the parametric instability to resonant wave interaction

2
'
'Y

and to the catastrophe theory of Thom. He noted that the Floquet system

could be applied to other flows if certain general properties of waves are

P

e e
PR
[

..n "I O.A"\ *

o
P
. te

satisfied.

In 1979, Nayfeh and Bozatli [25] studied the subharmonic vortex pair-

o

roL . .

53' o ing in a boundary layer using the method of multiple scales. They showed

L0%:

e that a large ampiitude of the TS wave (29%) is necessary to initiate the pair-

e 2

% “ ing process. This fact is in agreement with the present results. However the

el v

:-‘[ - analysis was only two-dimensional, while the most unstable subharmonic
LIS

t modes are three-dimensional, with a spanwise wave number of the order of

T

a ’I

"*::: the TS wave.

2%

SR The application of Floquet theory to the stability study of equilibrium

:;'.2* 2 states in plane Poiseuille low was concurrently developed by Orszag [26]
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and Herbert [27], 1981. The former author used the method to verify the
linear character of three-dimensional instability as revealed by the distur-
bances’ exponential growth with time in a full numerical simulation of the
Navier-Stokes equation. While Orszag focused on large amplitude equili-
brium states and subcritical instability, Herbert performed a thorough inves-
tigation in the case of small amplitude TS waves, and used the threshold
amplitudes, the 7 selectivity, and other characteristics of secondary instabili-
ties to clarify the experimental observations. He extended the model to the
Blasius boundary layer. By a careful study in the limit of vanishing TS wave
amplitude he was able to determine some circumstances in which weakly
nonlinear models were complete and others in which the models failed to
account for the dominant modes [4]. By means of a crude transformation
from temporal to spatial growth rates, the experimentally observed stream-
wise amplitude variation of the subharmonic was astonishingly reproduced

by the theory [2], confirming the parametric nature of instability in the

second stage of transition.
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GOVERNING EQUATIONS FOR SECONDARY

INSTABILITY

The following derivation is confined to steady, incompressible, constant
temperature shear-layer flows having a weak variation in the streamwise
coordinate. In the derivation we follow Herbert [1-5]. The analysis is
divided into two parts: the construction of the periodic basic flow and the
investigation of superposed secondary disturbances with amplitudes

sufficiently small for linearization.

1. Construction of the Periodic Basic Flow

We consider the flow over a semi-infinite plate at an angle P= /2 to the
free stream. Let X denote the distance from the leading edge along the
plate, Y the distance normal to the plate, and z the spanwise coordinate,
U, = kXP/N2-P) the inviscid flow velocity at the surface, and X, the loca-
tion at which the stability analysis is performed. The undisturbed boundary

layer stream function is given by

1
V(XY = V(05 5= [e-PEE]T, y=5 ()
where f(y) satisfies the Falkner-Skan equation
f’" + ff” + P(l—f’2)=0 (2)
f(0) = J'(0) =0, f(y—co) =1 (3)
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: ;ﬁ o We use 6 and U, as characteristic quantities for nondimensionalization, and
' \ {F'

XN define the Reynolds number by R = U,§/v. At sufficiently high R, pri-
- ﬁ mary disturbances appear, and during their initial stages of growth they are

well modeled by linear stability analysis. Only a general overview of the

s

analysis will be given here. For a detailed description see ,for example,

e Betchov and Criminale [28]. We superimpose a small disturbance v; on the
\.\:\

b o basic flow V,

Loy 9

- - v(X,y,2,t) = V(X,y) + 4 v(X,y,2,¢) (4)

-.I )

R A <<1 (5)

Wy

o o and insert this compound flow into the Navier-Stokes equation. The non-

STV

d . . . .. .

OIS linear convective term A%(v, v) v, is dropped in view of the small ampli-

1PN

'3 - tude of the disturbance. Collecting terms of order A one obtains linear

.4-..'4

SO .

. ﬂ governing equations for v,,

.ﬁ‘(. s a v 1 2

P i1 T 9V + (Vo)vp = -vp, + =9v (6)
= vV =0 (7)
N [: subject to the boundary conditions v,(X,0,2,t) =0 ,

;:::f w vi(X, y—o0,z,t) = 0. Equation (6) is separable in ¢ and z. Due to the

“' weak variation of the Falkner-Skan profile with X, we apply the parallel-flow
L] "T_

M'{ o approximation and assume the profile to be locally one-dimensional,
5

S5

_::(: N V,(X,,y). Then the disturbance equation becomes separable also in X, and
o WY

LI the solution can be expressed with normal modes in the variables X , ¢
RN

o and z. The error associated with the parallel-flow approximation is small in
J“.4

::::: {., profiles with favorable pressure gradients, P > 0, but increases in profiles
' of

o with adverse pressure gradients, P < 0. For a detailed description of the
N
S
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3
N 2.
Z: effect of non-parallelism in the analysis, see Saric & Nayfeh [29]. As first
) shown by Squires [30], the critical Reynolds number is associated with a
ﬁ two-dimensional wave. This fact has lead to the incorrect popular belief that
- two dimensional disturbances are most unstable at all values of wavenumber
: ” a, or frequency F. In our analysis, we restrict our attention to two-
l dimensional TS waves since this type is most easily produced by the vibrat-
ing ribbon technique. The usage of oblique TS waves in our analysis should
require little modification. Tbus, we drop the z dependence and recast the
-:; equations in terms of the disturbance stream function ¥,. The solution form
o is given by

¥ = A(X) [6(y)e™ X 4 gt(y)e alX-) (8)

The ' denotes the complex conjugate, ¢ is the phase velocity, o = a,+iq;

and ¢(y) are solutions to the Orr-Sommerfeld eigenvalue problem,

et >’
T
P PRI
., e
' I [
. P

(D% iaR((U, - ¢)D - U,")¢ =0 (9)
8(0) = ¢'(0) = 0 , p(—c0) = 8/(—oc0) =0

Eon St
'

AL s . . .
- where D = F- a’ and «, is the streamwise wavenumber, a; is the
s y
growth rate. Note that R is a coefficient in (9), so that @« = a (R) and,
F consequently, « is also a function of the streamwise position .X. The varia-

tion of the amplitude is given by

O X
5 A(X) = Apexp(- [ a(X)dX) (10)
. Xa
g where A;, is the TS amplitude at an initial location X;,. In the presence of a

TS wave of finite amplitude, the two-dimensional low has the form

- .|‘. .v'_.
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)

N
g vi(X,9,t) = Vo(y) + A(X) vi(X~ et,y) (11)
2k
,::3 ) . The eigenfunction #(y) in (8) is normalized such that A measures the
4; “ streamwise rms fluctuation of the disturbance. As the primary disturbance
w\’ .
*:: oy grows from infinitesimal to finite amplitude, nonlinear interactions begin to
>
'\ ' modify both the mean and the disturbance profiles. However, the numerical
L}

(R

»{ Eﬁ studies of Orszag [26] and Herbert [4] in plane Poiseuille low have shown
f; D5 that nonlinear modifications have negligible effect on the growth of secon-
L) '..}
(K> -
’ dary instabilities. Thus, we keep the shape of the TS wave as given by the
l‘V‘ " ?
‘:' g h linear analysis up through finite amplitude values. This approximation is
L >
;"“ £ called the shape assumption.
‘lnl
‘_ . In view of the weak (viscous) growth of the TS wave in comparison to |
i'_:.; = the explosive (convective) growth of secondary disturbances, we neglect the !
e ‘
o B weak variation of the TS amplitude and consider, locally,
o A(X) = A(X,) = A,. One may view this approximation as an extension of
T the parallel low assumption to the TS wave, and as the 0% order approxi-
= L mation in a weakly non-parallel analysis. The time dependence is eliminated
DJCw O

o) by changing from a fixed coordinate system to a coordinate system moving
A
Y with the phase velocity of the TS wave, z = X - ¢¢ , and the flow
o
— becomes periodic in the moving streamwise coordinate z,

s _ .

o Vo(z,y) = Vo(y) + 4,v(z,9) (12)
Oof f
‘."‘ Here, and elsewhere, the ~symbolizes the periodicity of the function.
« Fig. 3 illustrates the above steps. In a neighborhood of X, both the
':":_:: Falkner-Skan profile and the TS wave amplitude are assumed constant,
.{ thereby extending the periodic flow from -oc to oc. A detailed study of
) .
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'”g < temporally and spatially growing TS waves for Falkner-Skan profiles has
) been presented by Wazzan et al. [31]. The periodic basic low (12) can be
'ﬁ; s considered as known from any standard procedure for analysis of TS waves.
g
oo
e 3
L3 2. Secondary Disturbances. Linear model.
\
- % We study the evolution of secondary disturbances through a linear sta-
p !
1*')5 - bility analysis of the periodic basic flow (12). A small secondary disturbance
' vy = (u3 ,v3 ,w3) is superimposed on the basic flow,
Eag
x v(z,y,2,t) = Vy(z,y) + evy(z,y,2,t) e <1 (13)
--"\.
o and the compound flow is inserted into the Navier-Stokes equations. The
v nonlinear convective term €2 (v43'v)v; is dropped in view of the small dis-

turbance amplitude, yielding linear equations for vs,

!
N E

- - 1
; EV:; + (V2'V)V3 + (V3'V)V2= -vP3 <+ Evz\@ (143,)
! o vV =0 (14b)
g subject to the boundary conditions vy(z,0,2,t) =0 ,
’3.’: . vi(z, y—o0 ,z,t) = 0. The linear secondary stability problem, hence, is an
WA
e eigenvalue problem. Taking the curl of (14a) to eliminate the pressure,

4,

) introducing ¢, = ~ %%, and the disturbance vorticity wy = (&5 ,73 ,¢3),
":: ) and using continuity to eliminate the >»component of velocity wz, we obtain
- -

N a system of of linear differential equations for u; and v,,

@

\.‘ i=. 2

v, 5 sy -l 2, . LY 9%

) k [RV (Vo= gz - 3)V™ * %7 o2

: - la’f’xa 3'013) 2 +52'1’1,3$'34_3'73)_ 32’1’1,393’_353)_

. Al dr dy dy 9z Vs 922 ' dy Oz dzdy Oz 3z

{

L2/ du av d¢, ov ]

B . TV TR Y TR SN BRI B 1% DS

SO 52 33t Ty T By e T (ME T %y %s (152)

Z

e
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" 1 z-(U_c)i_ia'" _ U, & [_ S &vs
e RV ° dz 9t 9z dy 8z7° ay* 9:°
~
(3101 8 _ 9 a 32101)3'13 + 321/’1,32"3 +32”3)|=0 (15b)
ﬁ oz dy dy 9z 9z0y’ 9: dz® ' 9z8y = 9y?
Note that dn3/9z and 9€;3/0z are expressible in terms of u3 and v3 . These
N equations have three important features: linearity, coefficients independent
% of time and spanwise coordinate z, and coeflicients periodic in z due to the
v presence of v,. The first two allow the use of normal modes in ¢ and z,
)]
0

vi(z,y,2,t) = e'P7e?t vy(z,y) (186)

where the spanwise wavenumber G is real, and ¢ is in general complex.

o Floquet theory is fully developed in the context of ordinary differential
x
equations, and is well documented in the literature (see for example Nayfeh
"\
rl - - - L
o & Mook [32], or Arscott [33]). The extension to partial differential equa-
' ﬁ tions requires sophisticated mathematics, but seems to provide very similar
basic results. In our problem we assume a solution of Floquet form, since,
:L'- apart from the y dependence, the secondary disturbance equations are
I: essentially of Hill type in z. Letting ~+ denote the characteristic exponent,
LAY
and \, = 27/ «, the TS wavelength, we find two classes of solutions V3 in
'“ the form
X W(z,y) = e ¥p(z,9)  Vp(z +N.0) = ¥ (z,y)  (17a)
) ‘}3(1!3/) = ¢7° \7‘,(2,y) ‘}a(‘t +2kz9y) = \7‘,(1’,1/) (17b)
e where we denote v,(z,y) as the ‘‘fundamental’’ mode, and v,(z,y) as the
@
{7 ‘‘subharmonic’’ mode. Being periodic, ¥, and V, can be represented by
L
4
' Fourier series,
e
[ ]
o o
S
‘.l ‘e
®
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ie.°] A
P(z9) = 3 Tou(y)eitnés (182)
n=- 00 &= a/-
W(29) = 5 Touya(y)ei + 16 (18b)
n1=- 0 .

In principle, we can arrive at the same result by first expressing the solution
in a Fourier series in &,
0

v4(2,Y,2,t) = ¢'P2eTte7? Y Va(y)emas (19)

n == 00

and then introducing the basic flow (12) and secondary disturbance (19)
into the equations (15). The terms multiplied by exponentials of like index
are collected and set equal to zero, two uncoupled infinite sets of equations
result for the fundamental components ¥,,(y) and subharmonic com-
ponents V,, , ;(y). Due to the extensiveness of algebra involved, these

equations have been relegated to the appendix.

The solution forms (17a,b) reproduce the experimentally observed
behavior of three-dimensional disturbances [1,3]. The fundamental mode
produces the X,-periodic ‘‘in-line’’ or peak-valley splitting pattern as
observed by Saric & Thomas (9, Fig. 1]. The aperiodic term ¥,(y) in the
series (17a) gives rise to both a mean flow distortion and a spanwise
periodic longitudinal vortex structure. The subharmonic mode produces the
2, -periodic staggered structure [9, Fig. 2, 3] and has no aperiodic term in
the series (17b). Both the fundamental and subharmonic modes can
undergo exponential growth in time or space, consistent with experience

from numerical simulations and experiments (see also [34]).

The secondary instability equations can be recasted with real

coefficients, since the Navier-Stokes equation involves only real values.
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Thus, the eigenvalues are either real, or complex conjugates. In the case of
complex eigenvalues special care must be taken in the computational tech-
hfque to follow the birth and collapse of the complex parts. For real eigen-
values, the method of solution herein presented is valid, and the use of a

real formulation provides considerable savings in the numerical work.

3. Spatial and temporal growth in a moving frame

Owing to the exponential dependence of v, on both time and space, as
seen in (19), we are faced with the necessity of choosing one of the
exponents , ¢ or <, as the eigenvalue. In this manner we select between
temporally growing or spatially growing modes, in full similarity to the study
of TS waves. Temporal growth analysis is simpler and requires less compu-
tational effort since o appears linearly in the equations, while 4 appears up
to fourth power. Moreover, a relation exists between the two types of
growth, and can be utilized to approximately transform temporal into spatial

growth rates (see below).

For primary disturbances, spatial growth is measured with respect to the
laboratory frame of coordinates. In order to arrive at a consistent formula-
tion of temporal and spatial amplification for secondary modes, we express
the velocity field (19) in laboratory coordinates

va(X,y,2,t) = e'Pz¢gl0 - 76)tenX f: Vo(y) e X - ) (20)

R == 0

To restrict the disturbance exclusively to temporal amplification we set

the ‘‘spatial’’ exponent ~ to zero and solve for the ‘‘temporal’’ exponent o

as an eigenvalue. The real part of o dictates growth and decay in both
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coordinate systems, hence the moving and the laboratory-fixed observer wit-
ness the same temporal growth. For purely real o, the mode is fixed in the
(z,y,2,t) frame and, hence, tuned with the TS wave. For complex o one
obtains conjugate pairs, ¢ = ¢,+0,, and the modes propagates upstream
and downstream in the moving coordinate system. In a laboratory fixed
frame the disturbances travel with a phase speed different from that of the
TS wave. Calculations have shown that at realistic amplitudes the dom-

inant, i. e. most unstable, mode is associated with a real eigenvalue.

A spatially amplified disturbance in the mowving coordinate system can
be computed by setting o equal to zero and solving for v as an eigenvalue.
To a laboratory-fized observer, however, this disturbance mode exhibits
mixed spatial-temporal amplification, since in (15) both ¢ and ~ are multi-
plied by time.

The two cases of most interest are those of either temporal or spatial
amplification in laboratory coordinates. Indeed, experimental observation
shows that in boundary layers the growth of primary and secondary distur-

bances is only spatial.

In order to obtain disturbance modes with purely spatial amplification in
the laboratory frame, we note from (20) that the time-dependent factor
e(?=7°)¢ can be suppressed by choosing ¢ =~c¢. In the moving frame. we
therefore search for solutions of the form

. 00 .
va(z,y,2,t) = etBz et vz A\: v,(y)eiaz (21)
n=- 00

and solve for v as the eigenvalue. (Recall that computations must be carried

out in the moving coordinate system for only there is the Floquet theory
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directly applicable). We calculated all the information on spatially growing
modes in this report using this approach. Lastly, we note that setting
o = vc¢ + a produces disturbances growing spatially in X but having the
frequency detuned from the subharmonic by the value of a. In this case the
eigenvalue 4 is complex, with the imaginary part producing the modification

of the streamwise wavenumber associated with the change in frequency.
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NUMERICAL METHODS

Ay N
«
A

FM

= i/.f"'
»

=
e

i The Falkner-Skan equation (2), the OSE (9) , and the secondary dis-

v
¥

P

l'lrl'

turbance equations (14) are numerically solved.

The Falkner-Skan profile f(y) is calculated using a 4% order Runge-

e

N -

.
v

Kutta integrator coupled with a shooting scheme to satisfy the boundary

e S

s :3 condition at infinity. An accurate value of f”(0), necessary to initiate the
o

- , shooting procedure, is obtained from a parabolic fit of f”(0) as function of
:}- P from existing data [35], thus minimizing the number of iterations, and,
S

more importantly, avoiding the calculations of profiles with backflow [35] in

;é ~ adverse pressure conditions, -0.198 < P < 0.
RS
;g For the fundamental and subharmonic profiles (18) the lowest Fourier
E")'* g truncation is used: v_,,v,,v, for the fundamental, and v_;,v; for the
)
:#” % subharmonic. The dominance of the first terms in the series and the small
»

ooy
o error of the truncation have been proven in previous works [36], [37]. Both
j ? the OSE and the secondary disturbance equations are solved by transform-
7

HOI ing the differential equations into an algebraic form through the use of a
AEEN
’ te spectral collocation method with Chebyshev polynomials [38]. In view of
:_: : the finite domain of definition for Chebyshev polynomials, the semi-infinite
,:\:Z; . domain y € [0,00) is mapped into §€&(1,0) by the transformation

S y

.. ’ y = — - y,. Letting K denote the number of collocation points used in
?.’ 2 y

-J .

.', Y the analysis, one chooses the value of y, such that half the collocation
::‘ .

F
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points §, = cos(%) are placed inside the boundary layer displacement
thickness, wherein the disturbances undergo rapid change.

Without loss of generality, we use the subharmonic instability problem
to discuss in detail some aspects of the numerical method. We approximate
the eigenfunctions ¥, = (%, , v,) in series expansion (18) by a finite series
of odd Chebyshev polynomials,

K+1

i) = L owTuoild) i) = 5 buTuoi() (22

The use of only odd polynomials, all of which vanish at § = 0, causes the
boundary conditions at that end, which is the image of y = oo, to be
automatically satisfied. Substituting the Chebyshev series representation of
the velocity components into the governing equations and solving the equa-
tions at the K collocation points results in a 4K row by 4K + 6 column
algebraic system for the unknown coefficients a,, and b,. The system is
made solvable (square matrix) by the addition of the algebraic form of the

six boundary conditions at § == 1, which is the image of the wall at y = O,

Uy =0, v, =0, =0 (23)

For elegance, and computational simplicity, the “chain rule terms” arising
from the algebraic mapping are incorporated in the definition of the deriva-
tives of the Chebyshev polynomials. The ability to do this is based. clearly.

on the linearity of the equations; for example,

dv, §° v,
em— — — g wve—— = b [-—-——- -—-]‘ - ]
dy ya d@ z: M l l( )

I

) bu—.T21+1(9) (24)
dy

el b s |




)
)

ot j:\_f The advantage of solving the problem in its original boundary value ﬁ
b format, versus solving it via a shooting technique, is great. A global eigen- |
z . |
- i value search procedure, such as EISPACK (Smith et al [39]) can be applied
b .

-;'. e to the algebraic system to obtain a complete spectrum of the eigenvalues at
e

4 new locations in the multidimensional parameter space («,3,R.4). Choos-
\

£ o ing from the global list a most interesting eigenvalue, one can then compute
b
o ) its variation during a local walk in the multidimensional space. A Newton
0% o

e iteration procedure is used, which  computationally less demanding: order
il

- (4K +6)3 versus order (4K +6)* for EISPACK.

, e A discussion of the local procedure can be easily done by introducing
v o

'. the following notation. We represent the algevraic formulation of the prob-
VRS
SRS lem by

s

b .

L Gyl =0 (25)
y

:’: - where y is the p-dimensional vector composed of the unknown coefficients,
b e

; -

. . y={(ay by a1 ,0_y) (26)
I k=1,K+1 , I=1,K+2 , p=2K+1)+2K+2)
AR

reo

“ and G : R?—R? is the linear operator, acting on y, constructed by the spec-
.‘: :‘_: tral collocation method. The eigenvalue o appears linearly in G, while ¥
E‘:,' appears up to fourth power. For generality, we let \ denote either of the
' T eigenvalues and indicate the functional dependence of G on \ by writing
::' %: G)‘-

‘S
. The local procedure is based on the property that the eigenvalue \ and
YR

g ‘ the eigenvector y are smooth functions of the parameters (. 3, R , A).
[} -

) CS Thus, given an exact pair X\, ,y, at (o, , 3, , R, , 4,) we search for
YRS

K

. -
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o
RN
:.::: - NoyYeat (0, +aa,8,+a0,R, +aR , 4, + a4) via Newton iteration.
T~
ﬁ ~ To this end, we augment the system by constructing
o x=(y,\) x € R *1 (27)
on
IR H H 1
fsin - and F, : R? *!= R? * ! is obtained by adding to G an eigenvector normali-
L0
::. [ zation condition ( for example, setting the last coefficient, 5_,;, equal to 1
ol : : o :
z}: . ). Note that F is not.a linear operator when X\ represents «, i.e in a spatial
‘I 5 .‘::
P e formulation. Via a Taylor series expansion we write,
: ! ] 2
Y 0= F(x,) + VF[x.-x,] + O( [x.- x, %) (28)
-"‘L‘
‘L"‘:;
“}: N where 7 F, is the Jacobian evaluated at x,, acting on x, - x,. Omitting
{ #:
® . . ..
2 the higher order terms we rewrite the equation in the form
AR
"»' va,_ x[xu' Xy - l] = F(xu— l) (29)
;‘:;f‘ e
5-, b and solve for x, iteratively. As written, the Jacobian is updated at each
5
éz o iteration, yielding a convergence rate of second order at a computational
3: cd
Y i . cost of order p3. Suppressing the updating to selected intervals gives a con-
N ¥ vergence rate of first order, but decreases the computational labor to order
~”},.3 - p>. Since 20 to 30 collocation points are necessary for good accuracy, the
' value of p is between 86 and 126, so that the selected updating of the Jaco-
-'}':j: o bian can greatly reduce the numerical work.
‘ilgi .
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RESULTS

1. Introduction

In low turbulence conditions, such as those that exist in free flight, the

-y
ZE; subharmonic type of secondary disturbance is much more unstable than the
- fundamental type (Klebanoff structure) [40]. This fact, together with the
W

need of extensive computer time for a detailed study, led us to focus our

attention exclusively on the subharmonic modes. The study of pressure

gradient on subharmonic disturbances is complicated by the functional
n dependence of the eigenvalues X\ (growth rates) on a large number of

parameters,
"‘L A\=X(a,8,R,A,P) (30)

A significant portion of the research was employed for orientation in

W this multi-dimensional space. Hence, as a preparation for discussion of the
Y = results, it is useful to mention the most interesting choices of parameter
variation. The spanwise wavenumber selectivity, given by the variation of

- growth rate with 4, addresses the question of two or three-dimensionality of
the disturbance. This variation is included in almost all the graphs. To take
into account the change of the nondimensionalizing variable § with stream-

wise location we replace 3 with the variable b

-~ b = 1000 3 / R




S, bl diadaiiaitddAaiefinheiiaiindidniaiiktlekddekdesdd e it adind Al
b |
P'I.-_‘ "‘-.
AT .05
Sy . . . . .
e, which describes a wave of fixed physical spanwise wavenumber as it travels
IF -
bR u downstream. Other important parameters are the TS amplitude, the pres-
[ sure coefficient P, and the Reynolds number. The influence of at most two
.‘-_'\’_
‘::'-';j = parameters can be clearly represented in a graph. The following combina-
'..:‘_: -
ey tions are presented:
| i P
.....!. 1.“
e - a,R,A [ized; b, P wvared.
s - a,R,P fied; b,A varied.
Ly - a,P,A fized; b,R varied.
:.; — - B,R,A fized; b,a wvared.
.Q){ - The value of a is a specified parameter in temporal analysis, and the TS
SN
‘ wave frequency w, is given as the imaginary part of the eigenvalue of the
o
.,
f OSE. As done above, we define a new frequency , F, independent of the
S
\'_T. downstream change of the nondimensionalizing variable §,
e F=10%w /R
1SS
NN .
i;; ’ In spatial analysis, the value of the frequency F is specified, and the TS
T
L wave wavenumber a, is given as the real part of the eigenvalue of the OSE.
s T
;}' N Hence note that the functional dependence on o in (30) is changed to F
1 :..'
J_-;j when dealing with results from the spatial analysis. The spatial calculations
g
'"ﬁ' pe were conducted mainly at F = 124 and F = 83 to match experimental con-
0 ditions [8],[41].
R
Kol -~
Q. 2. Effect of pressure gradient
SR
::3:: We begin the discussion of results by presenting a comparison between
LS
‘:\, 2 theory and experiment to validate the accuracy of the theoretical model.
[ ]
Wi . Fig. 4 juxtaposes experimental (8] and theoretical results for the spatial
< D
Oy,
S
M
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amplitude growth of TS wave and subharmonic mode for the Blasius profile.
The initial TS amplitude is A, = 0.44% at branch I, (R; = 535) and
grows to 1.23% at branch II (Rj; = 855). A virtual leading-edge correction
of 20 ecm has been applied to the experimental data in order to bring the

experimental R;; = 840 into agreement with the theoretical value, 855.

The initial subharmonic amplitude was chosen at B, = 0.00126% in
order to match the experimental value of B at R;. The subharmonic

amplitude is calculated using

R
B
l——=
nB,,] -{7()2-Pds

For data points at R > 700 the computed growth rate closely follows the
observed slope,- confirming the parametric nature of subharmonic instability
in the initial stages of growth. The measurements at R < 700 were taken
shortly downstream of the vibrating ribbon (R =575) where neither the TS
wave nor the subharmonic mode are fully estahblished. Fig. 5 shows the
selectivity of the subharmonic instability mechanism with respect to b at
R =700 and 853. Based on the maximum spatial growth rate, the theory
predicts 4 = 0.27 at R = 700 and b = 0.29 at R = 855. However,
natural selection of b in experiments also depends on the spectral content of
the background noise. The observed value of b = 0.33 is close to max-

imum amplification throughout the range of measurement.

Fig. 4 and 5 are almost indistinguishable from those given in a previous
comparison {2, Fig. 9, 13 | in which the growth rates are computed using a

temporal formulation and converted to the experimentally observed spatial
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growth rates by means of a simple transformation. We devote an entire sec-

tion to the the comparison of spatial and temporal data.

A detailed collection of experimental data for transition over surfaces
with an adverse pressure gradient is, today, unavailable. This is unfortunate
because the anticipated increase in the error due to the shape and quasi-
static assumptions cannot be assessed by comparison. Indeed there is evi-
dence [42] that near separation the distortion of the mean flow is not negli-
gible. However, we expect the current results to capture accurately the

quantitative behavior of the growth rates.

The destabilizing effect of an adverse pressure gradient on the dom-
inant subharmonic mode is shown in Fig. 6. A decrease in the pressure

coefficient increases the growth rate as well as the range of unstable span-

lh wise wavenumbers. A likely consequence of this effect is the amplification
- of a relatively narrow band of spanwise wavenumbers in regions of favor-
K

0" able pressure gradients, which sets the stage for the downstream develop-
F ment. Most surprising in Fig. 6 is the sharp cutoff at 6 = 0.05 for the
“‘ inflectional profiles, indicating strong damping of the vortex pairing mode at
W

by a TS amplitude of 1%. Detuned modes (o complex) are less amplified than
s‘:" the dominant mode in all profiles and at all values of the TS amplitude we

have investigated.

é_. While the adverse pressure gradient enhances the growth rates of both
;g.i the TS wave and the subharmonic disturbance, there is only a moderate
: effect on qualitative features. Dramatic changes occur, however, in the
?g eigenfunctions, i. e. in the disturbance velocity profiles. A comparison of

'vg mean and streamwise rms profiles is given in Fig. 7 for the Blasius profile.
» .
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3 % P =0, and in Fig. 8 for the Falkner-Skan profile near separation,

= b

Fod 44

P = -0.18. Fig. 7 shows the agreement of the spatial result for the subhar-

monic mode with the experimental data [8]. Comparison with [2, Fig. 14]

=
-
=

¢

also indicates that spatial and temporal results for the velocity profiles are

R G

hardly distinguishable. The position of the maxima with respect to the criti- 3

P
B o

cal layer at y, (for the TS wave below, and for the subharmonic mode

-~
-

A

S s

above y.) is qualitatively unaffected by the pressure gradient. However, y,

bt -5 L
A
T

»‘ u in Fig. 8 is further away from the wall. A second maximum develops in the
i' ! "’ TS profile owing to the gradual changeover from viscous to vortical (inviscid
S

,.} o inflectional) instability. Velocity profiles at values of R = 1168 and
;' ™

Ay . . .

. & F = 83 are shown in Fig. 8. We note by comparison to the profiles at
N - R = 873 that only a small modification is brought about by a change in fre-
! Fﬁ quency and Reynolds number. Experimental data on disturbance velocities
ﬂ are scarce. At the present, we can only say that our results are not incon-
b .
i N’ L3 . . - - .
i? N sistent with measurements [42, Fig. 14] in the separating flow over an air-
(s s

i foil.
] L

i
\ \_ﬁ - 3. Comparison of wall-bound and free shear layers

S

‘ Boundary layer profiles near the point of separation exhibit high
pﬁt 5 inflectionality and maximum shear stress far from the wall, thus bearing

“w
! AR resembiance to a free shear layer. This observation leads one to enquire
oy, &

o under which conditions the two types of flow share stability characteristics.
)
P M . . . .
\} o In the light of separation and reattachment we place particular attention on
oY
:::E o the preferred spanwise wavelength of subharmonic modes, in other words.
" “~
.a on the two-dimensional or three-dimensional nature of secondary distur-
N

oy

r3 N

[ ]

wv " w

R N AR
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bances.

The inviscid stability of a spatially periodic free-shear layer has been

- studied numerically by Pierrehumbert & Widnall [20]. They found the layer

to be most unstable with respect to a two-dimensional (§ = 0) subharmonic
mode, and the growth rate monotonically decreasing with increasing 8 [20,
Fig. 5]. The disturbances undergo pure exponential growth and are tuned (o

real).

Growth rates for the pairing mode and a three-dimensional subhar-
monic mode in the Falkner-Skan profile at separation are shown in Fig. 10
as a function of the TS amplitude. Under these conditions, three-
dimensional secondary instability is dominant up to TS amplitudes of 18%.
At low amplitudes, the vorticity concentrations generated by the TS wave
are too feeble to overcome the damping effect of the wall on the pairing
mode. Vortex pairing takes the lead at very large amplitudes of the primary
disturbance, but still competes with three-dimensional phenomena. This is
more clearly shown by the growth rates as a function of the spanwise
wavenumber b in Fig. 11. There is a strong similarity between the curve for
A = 30% and the curve in [20, Fig. 5] for amplitudes in the same range.
Note. however, that the neglection of nonlinear terms under the shape
assumption may be invalid at this high amplitude level. The effect of the
increase of vorticity on the streamlines can be seen on Fig. 12. At amplitude
of 1% the vorticity concentration at the critical layer is weak, creating a
streamline pattern greatly flattened by the presence of the wall. At ampli-
tude of 30%, however, the effect of the wall is not pronounced and the

stream!lines resemble closely those of a free vortex. This process is accom-
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panied by the stability changeover to a basically inviscid vortical mechanism.

As a further check that detuned modes are always less amplified than
tuned modes a comparison of growth rates was made for different values of
a. For the separation profile ( P = - 0.198 ), Fig. 13 shows the growth
rate of the most unstable fixed mode together with the two dimensional
(8 == 0) running mode as a function of a. For the most unstable fixed
mode § varies from 0.34 at &« = 0.5, to 0.08 at @ = 0.05. Clearly, as a is
decreased from the upper branch to the lower branch of the TS neutral

curve this mode always dominates in growth rate.

Since the large TS amplitudes required for the pairing mode to dom-
inate can hardly be reached by viscous growth, " we can conclude that within
the entire attached boundary layer the development of secondary instabili-
ties, and hence the second stage of transition, will be dominated by three-
dimensional disturbances. Through this result it is fair to observe that the
process of vortex pairing in the separated shear layer is controlled not by the
growth of vortex pairing prior to separation but by the amplitude growth of
the three-dimensional disturbances. This observation is substantiated by
experiments in free shear layers [43] in which vortex pairing was observed
to dominate only when the background disturbances where sufficiently low
(hence, low amplitudes of the three-dimensional disturbances in the boun-

dary layer over the splitter plate).

4. Temporal to spatial transformation for secondary disturbances

In view of the reduced computational effort needed for a temporal

eigenvalue search, as opposed to a spatial search, a natural interest arises in
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a transformation relating the two types of growth rates.

Indeed, one may even hope for the existence of a simple and accurate
relation valid over a wide subdomain of the parameter space since, after all,
such is the case for primary (TS) disturbances ( Gaster’s transformation

[44]. For a transformation in non-parallel flows, see [45]).

The transformation for secondary disturbances can be derived in a
straight forward manner, as shown below. Unfortunately, the transforma-
tion takes on a simple form only in regions near a neutral growth point,
where both érowth rates are small. The transformation acquires an involved
form in regions of large growth rates, and the substantial amount of compu-

tation required may undercut its usefulness.

In the moving coordinate system (§,y,z,t) the velocity field solution to
the secondary disturbance equations takes the form

. 0 .
vs(f,y,z,t) =e'ﬁ‘c"tc7€ z V”(y)c""’f (30)

n === 00
where ¢ and « are the complex temporal and spatial growth rates, respec-
tively, and « and 3 are the streamwise and spanwise wave numbers, respec-
tively. We recall that solutions with

c=0,+0 i} represent temporal growth m both

0 fized and moving coordinate systems (31a)

2
f

o4
v

~e

} represent spatial growth in fized coordinates (31b)
‘71' + ‘7{

The disturbance equations functionally relate the parameters v,0.a, and 3

in the implicit form
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| 272

; W F (v,0,0,8) =0 (32)
; provided that all other parameters appearing in the equations, namely R,
ﬁ frequency, T-S amplitude, and pressure coeficient P, remain constant.

:a-. We will henceforth assume that the polysurface described by equation
N # F is smooth and the partial derivatives with respect to its variables exist up

‘ L to the order required.

-. Seeking a transformation from temporal to spatial growth we re-write

(32) in the explicit form

e

2 v = f(r), r =(0,ah)

it

& We choose two points r, and r, € (¢,a,3), and connect them with a

;:: smooth path ¢ (p) parametrized by p, with end points ¢(0) = r, and

c (1) = r, . The values of « at the two end points of the path are related

ij by the first fundamental theorem of calculus,

;i 1

y(ry) - ~A(r) = f grad ( F ) - ﬂ‘;p—tldt (33)

[; 0

‘ This is a most general transformation. In the special case when r, and

'S

j- r, correspond to spatial and temporal growth rates respectively, the end
T points are according to (31),

r, = (v°¢,a,4) and r, = (0°a3)

’ where ~° is the spatial and o° the temporal growth rate. The path ¢ (p)

j now keeps the value of a and # constant, and (33) reduces to

o ve

' ~0 = f [-affr—’y,. + 3 %ﬂ/, do, (34)

y q,,*»".“u'u .\
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where use has been made of the Cauchy - Riemann condition

oa, &, o T - T e T
% —Bo. " 'Fe. T B, s, (35)

Equation (34) is the desired transformation. Note that the spatial eigen-
value, which is the unknown, appears on both sides of the transformation.
Next we want to reduce equation (34) to a form involving only data
obtained at, or near, the endpoint ¢ (0) corresponding to temporal growth.
Therefore, we expand the integrand in a Taylor series about o ?

n

é) g
a_')'r(ar) =g, + 9ol(ar - 0‘,?) + L(Ur - 0'1?)2 + ~-'(36)
o, 2
where
Gy = 21,08 . 9 =Tmv(ed) . e (37)
do, do;

Inserting the Taylor series into (5) we obtain the following approximate

transformations for real eigenvalues,
v/¢
Oneterm: ~? = f g, do,
c/;

s (38a)

Two term . v, = f {go +g'y(o, - '70') do,

av?+a;v, +e =0 (38b)

where a, = ¢,¢
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6, = g¢',(09)?- g0/

A three-term Taylor series yields a cubic algebraic equation for v/?, & four-
term series yields a quartic, and so on. Since approxim .'.ons of higher
order require numerous values of ¥ = ~(o) near, and at, o, for the calcu-
lation of higher derivatives and also require numerical solution to the associ-

ated algebraic equation, high order approximations become too cumbersome

to calculate. The results for a one-term and two-term transformation are

- given below. Blasius flow Re = 1168, F =83 ,a =0.276, 4 =""1%
l.:':j -
LA Exact Values
. =
R B o’ ol
4w
S X10° X102
L “ 0.042 0.000 0.000
i 0.09 0.775 2.117
r{j .
N 0.18 1.175 3.188
o) g 0.32 1.169 3.170
WA
i‘:‘ﬁ
- i
g‘k" g ~ from approximate transformations
fu )
" .- g,
QNS e —  Error Oneterm Error Twoterm Error
3 °
As L 9
SIS % x10? % x10° %
S
PO
o 0.042 0.000 0 0.000 0 0.000 0
)'_‘I_ ?
7 0.09  2.207 4.25 2.094 1.1 2.114 0.1
.t
o
bs 0.18 3.345 4.93 3.063 4.0 3.137 1.6
Lﬁ'\.» A .
vy 0.32 3.328  4.98 3.031 4.5 3.112 1.8
ASES
‘E:-:: .:'
v,
w0 >
-
7
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R R IR D I AL R o Fe St e 2o e M e A (3 i



g TR _“-“-"wm'mmwmm-vw

35 |

Clearly, for 3 near the neutral stability point, both the one-term and ‘
two-term approximation yield good results. However, away from this point
the approximation becomes inaccurate. The error due to truncation is large
at higher values of 7/ and o2, where the function ¥ = ~(o) exhibits
strong curvature. This can be seen in Fig. 14. The function v = ~(o) is
quasi linear at # = 0.09 while for higher values of 7 the curvature under-

goes strong bending as it approaches the spatial endpoint ~/c.

Under strong curvature numerous terms in the Taylor series expansion
(34) must be kept for accuracy, and due to the accompanying increase of
computational work the transform loses its labor saving advantage. Expan-

sions other than a Taylor series could yield better convergence.
The plot of ¥ = ~(A) at fixed Re,a,F, and T-S amplitude is shown in

Fig. 15, along with the transformed values at three 3 locations. The zeroth

order approximation

0
VW =— (39)

is the one used in previous works [2], and gives the error upper bound for

values of amplitude less than 2%
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t CONCLUSION

b The present investigation finds that, under free-flight conditions (low-
T turbulence) , the secondary disturbances in boundary layers with favorable

and adverse pressure gradients (up to separation) behave similarly to those

¥y in the Blasius boundary layer, with the most noticeable effect of the pres-
- sure gradient being a decrease (favorable) or increase (adverse) of the
n
o

disturbance’s growth rate. In particular, the dominant disturbances are
always three-dimensional and tuned (real eigenvalues) to the phase speed of
the TS wave. Only at experimentally unreachable amplitudes in the neigh-
borhood of 20-30% does the secondary stability of the boundary layer
= become similar to that of a free shear layer, whereat the vortex pairing

dominates in growth. This fact is of importance, since it is conjectured that

xr

v
’l
et 3
z

the rapid evolution of three-dimensional disturbances prior to the separation

x at
L
s X

1
a_
x

of the boundary layer may cause the separated shear layer to break down

Fe 2
a2 a2

‘

into wall-bound turbulence.

A comparison of growth rates obtained from a temporal analysis and a

-5 spatial analysis shows that the results from the two formulations can be

related easily, with an acceptable amount of error, but an involved transfor-

AV

SUSIE o ) .
r‘ld:: mation is necessary for an accurate change. Thus temporal analysis remains
123

E:',,‘J;_-@ Iy a useful tool due to its lower computational demand. and spatial analysis is
[ J

oy of use when an accurate comparison with experimental data is needed.
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'.:’, - Due to a lack of experimental data for transition in boundary layers
W

' L)

v v with non-constant pressure gradient, a much needed comparison of theory
» “w

' and experiment is not possible. Good agreement in the Blasius boundary
}: layer, however, suggests that at least qualitatively the presented results are
daE valid.
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frie APPENDIX
e ﬂ
o
S
_:,u "u
b
Wi
ii) ] Herein we substitute the TS streamfunction %; and the normal mode
u‘“v ".:
“*'EJ‘ form of the secondary disturbance (19) into the governing equations
o O
ﬁ* G (15a,b), and arrive at the final formulation of the problem. First, we divide
~- s
, ‘ the differential equations into a sum of operators acting separately on u and
R o
o v:
n“{"- .
7
o Equation (15a),
SN
"(d.' 'L- 2
oo [l (v - )2 D)oy 4 LY By
= o) = gv - (U= egg = 3o + 47 52
T pu ¢, 8Py 8%u 3% 2y 5%u
. ’ == - D —————
o (¥u) 8z2 " 9z2  9y? * 8z2) * 0zdy 9z dy
Rl =
92 du 3oy
i T 2% gz T Ve
L
: oy 8 oy 0 8%y 8%y 3%y , 8%
P'(Y,v) = (m——m— - ——)7? 2 :
[5 (%:v) ( dz dy Ay ax) + o5z2 9z dy 8xay( dy?
"f-?_ _ 6% + 3%y w3y dv Ov2d dv v32v2¢
’ : 8z 922 4z 3y dy 9z 8z dy
1N
L. Equation (15b),
o5 1, 9 o) 8% . &
2 M (u) = |59 - (U, - % - 2|+ 23
o 1 5 9 %  dU, %
S hY o = |—=—g¢?- (U, - ¢)=— - — -
;-2' b M () [Rv (U, c)az ot) 0z dy dy 9z°
S ) o0 3 v d 8%, Pu . & 9w 9%
7 RSl P i P PR 7 P P v R i PED
e Q(p) = (L 28 v\ v | v w8y
e ’ 3z 9y By 0z 0zdy 029y 9z 84" 397 022
2
;v a -38-
&
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R T R it e e R S R A A
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The general form (no truncation) for the TS wave streamfunction is

7/)1:4‘1 Z (p'me:'maz (40)

v3(z,y,2,t) = ePZeote® YV, (y)ends (41)

where & = a/2 and ¥, = ( 1;,, , ¥y ). Introducing (40) and (41) into equa-
tions (15a,b) and collecting terms multiplied by exponentials with like index

yields the following infinite sets of equations,

Equation (15a),

L(v,) + BA S [P*(6mt;) + P'(bmv;)] =0 (423)

m =~ 00

Equation (15b),

M*(u,) + M*(5,) + RA 3 [Q(6mrt) + Q(m;)] =0 (42b)

m =- 0

where Jj=n-2m

The infinite order system (42a,b) must be truncated for computational rea-
sons. Under the shape assumption, we truncate the TS streamfunction (40)
o two terms; ¢_, and ¢,, and for the secondary disturbance the lowest
truncation is used; v_,,v,,V, for the K-type disturbance (fundamental),
and v_,, v, for the subharmonic disturbance. The system (42a,b) separates

into two uncoupled equations for the K-type and the subharmonic distur-

bance:
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EQUATIONS FOR K-TYPE

Equation (42a),

L(vy) + RAP*(¢,,u,) + RAP"($,,v,) =0
L(v,) + RAP®*(4,,u_y) + RAPY(6,,v_,).

S + RAP*(é_1,up) + RAP*(¢_y,vy) =0
N L L(v_3) + RAP*(é_,,u,) + RAP'(¢_;,v,) =0

Equation (42b),

sy

M*(uy) + M(vg) + RAQ*(4;,8,) + RAQ'(¢,,9,) =0
M*(u,) + M"(v,) + RAQ*(4,,u_y) + RAQ(¢,,v_5).

+ RAQ(4_143) + RAQ(4.,,v) =0

M*(u_3) + M"(v_3) + RAQ*(é_,,3,) + RAQ'(é.,,v,) =0

oY

A\|
-

-

EQUATIONS FOR SUBHARMONIC

: > Bl
A ':'r_" FREAPEIAT
oy e s 5
. s =" LI
. LI

Equation (42a),

!:' L(‘Ul) + RAP"(él,u_l) + RAP"(¢1,’U_1) =0
L(v.;) + RAP*(¢_,,u,) + RAP"(¢_,,v,) =0

Equation (42b),

M*(u;) + M(v)) + RAQ¥(4,u.,) + RAQ'(dy,v_y) =0
M*(u_y) + M(v_)) + RAQ*(4_,uy) + RAQY(6_,v) =0
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We now define the operators in terms of the normal modes variables. For

compactness we introduce the following abbreviations,

Fa =17 + ma
8, =75 - B°
2
Dm=—d7— m2a?
dy

Then the operators take the form,

v, + [2a, - R((U, = ¢)¥, +0o)lv"
+ [a2- R((Uy = ¢)Ta +0) + RU,"T,] 05

L(v,)

Mu(un) = An“n” - AnR[(Ua - C)'Tn +a]un + 53' U,

M’(v,) = Fata™ + Falaa - R((Uy = ¢)Tn +0)]v/
+ RBU,'v,

m2a¢ ,u," + 2imad ', u,’

+ ima(Dypd (2T, + ima) + mad ,a,)u,

P* (@ mru,)

P'(dm,v,) = mad,v," + ¢rrl’["ma - r/n]vn”
+ 'ma[(A'n + gima'-y-n)‘bm + Dm¢m]”n’
+ [Dm¢m’('7n + ma) - ¢ml7n(ima'7n+“n) - z'maém'ﬁQ]vn

Qu(‘pm’un) = madn,(a, + ma¥,)u,’ -~ Om'(ima + F,)a,u,

Q”(‘bm’”n) = '.ma‘#m(ima + 7»)”7:" - ém'(ima + rfn)'Tnvn’
+ ¢mnﬁ2vn
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:;: The transition from laminar to turbulent low in boundary-layers occurs
‘ L in three stages: onset of two-dimensional TS waves, onset of three-
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E \:} dimensional secondary disturbances of fundamental or subharmonic type,
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’- and onset of the turbulent regime. In free flight conditions, subharmonic
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oy disturbances are the most amplified.
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‘,-"-‘j { Recent modeling of the subharmonic disturbance as a parametric insta-
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0 bility arising from the presence of a finite amplitude TS wave has given
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,:' ‘t results in quantitative agreement with experiments conducted in a Blasius
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disturbances to exactly match the experimental observations.

Results show that subharmonic disturbances in Falkner-Skan flows
behave similarly to those in a Blasius flow. The most noticeable effect of the
pressure gradient is a decrease (favorable) or an increase (adverse) of the
disturbance’s growth rate. Due to the lack of experimental data, a com-
parison of subharmonic growth rates from theory and experiment is limited
to the Blasius boundary-layer. A comparison of results from the spatial for-
mulation with those previously obtained from a temporal formulation shows
the difference to be small. A connection between disturbance growth in a
separating boundary-layer profile and a free shear layer is presented. A
modification of Gaster’s transformation from temporal to spatial growth

rates for secondary disturbances is given.






